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Abstract

An efficient method to construct Hamiltonian structures for nonlinear evolution equations is
described. It is based on the notions of variational Schouten bracket*azwlering. The latter
serves the role of the cotangent bundle in the category of nonlinear evolution PDEs. We first consider
two illustrative examples (the KdV equation and the Boussinesq system) and reconstruct for them
the known Hamiltonian structures by our methods. For the coupled KdV—mKdV system, a new
Hamiltonian structure is found and its uniqueness (in the class of polyn@migtindependent
structures) is proved. We also construct a nonlocal Hamiltonian structure for this system and prove
its compatibility with the local one.
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1. Introduction

We describe a method of constructing Hamiltonian structures for nonlinear evolution
equations (or systems of such equations). The method is based on two conceptsathe
tional Schouten bracket and the/*-covering over a nonlinear PDE.

In Section 2 we expose some general facts concerning the geometry of super PDE. In
Section 3we construct the variational Schouten bracket on a super version of Kupershmidt’'s
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cotangent bundle to a bundle and, followifig], obtain an explicit formula for this
bracket. In Section 4 simple computational formulas are deduced to check the
Hamiltonianity of a bivector and compatibility of two Hamiltonian structures. Using the
Schouten bracket, we define Hamiltonian evolution equations (including the cases when
the Hamiltonian operatad may depend explicitly on time while the equation itself may
not possess a Hamiltonian functional). This definition is equivalent to the operator
equality

(gOA—i-AO@;;:O,

wheret, is the linearization of the equation ad# is the adjoint operator. To solve this
equation, we introduce the notion éf-covering (which is a particular case of a more
general construction introduced 8ection 5 and show that to any operatdr satisfying

the above equation there corresponds a funation the¢;-covering such thats(s) = 0,
wherel, is the lifting of the linearization operator feérto the£-covering. In other words,

the operators we are interested in are identified with shadows of nonlocal symmetries (of a
special type) in thé-covering.

The reason to introduce the conceptéjtcovering is twofold. First, as it was just
indicated, it allows to reduce construction of Hamiltonian structures to computation of
symmetries (with a subsequent check of additional conditions) for which a number of
efficient software packages exists. Second, to our opinion, this point of view gives a
new and fruitful insight into the theory of Hamiltonian structures for partial differential
equations.

In Sections 6 and,these methods are applied to the known examples of the KdV equa-
tion and the Boussinesq system.action 8 we construct a Hamiltonian structure for the
coupled KdV-mKdV systenf]. We also prove that this structure is unique in the class
of (x, ©)-independent polynomial structures. Nevertheless, extending the initial setting with
certain nonlocal variables, we find another Hamiltonian operator that serves a Hamiltonian
structure for ‘higher’ coupled KdV—mKdV equations. This structure is compatible with
the local one. It is to be noted that the theory of nonlocal Hamiltonian structures is not
sufficiently developed yet and needs additional research.

In the Appendix A we briefly recall the construction of the recursion operator for the
coupled KdV—mKadV system (obtained earlie{}) by which the above mentioned Hamil-
tonian structures are related to each other.

2. Generalities: jet bundlesand differential equations

Let us formulate the main definitions and results we will use. For more details we refer
to[1,2,8]

2.1. Jet bundles

Letw : E — M be a vector bundle over arirdimensional base manifoltf andr :
J*°(r) — M be the infinite jet bundle of local sections of the bundle
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In coordinate language, iy, ..., x,, ul, ..., u™ are coordinates off such thaty; are
base coordinates and are fiber ones, them., : /() — M is an infinite-dimensional
vector bundle with fiber coordinatesg, wherer = iy, ..., i is @ symmetric multi-index.

Now, we generalize the definition of the jet bundle to the caseimdrbundles.

Definition 1. Let E be a supermanifold of superdimensi@- mg)|m1, ands : E — M
be a vector bundle over andimensional even manifoldy. If r is split into the direct sum
of two vector subbundles = 7° @ 7! such that the fibers of° are even and the fibers of
71 are odd, then we say that(along with the splitting) is auperbundle.

For a superbundle, we define thénfinite jet superbundle zo, : J°° () — M by setting:
T00)’ = Voo (1) = ((THT)ea) ",

where the superscrig? denotes the reversion of parity.
Denote byF(r) the superalgebra of smooth functions 681 ().

Remark 1. By definition, we have
Flm) = F@°) @cmny A*(Fin(H)),

whereFiin () € F(-) is the subspace of functions linear along fibers.
In what follows we shall use the term ‘bundle’ to mean ‘superbundle’.
2.2. The Cartan distribution

Considerabundle : E — M and define th€*° (M)-supermodule I'(r) of its ‘sections’
asfollows. Ifr is even, thed (r) is the module of sections af If 7 is a general superbundle,
then we putl (r) = I'(m)° & ()L, with N(7)° = M=% and )t = (N(EHTH 7,

Remark 2. Thus, in line with our definition of jets of superbundles, we define elements of
I'(7) to be pairs of sections of° andx?.

Next, we note that every fiberwise linear functipon infinite jets/°° (;r) can be naturally
identified with a linear differential operataf; : I'(m) — C°°(M) and vice versa. Indeed,
for even bundler the correspondence is given in the relation

V)@ = fjeo(s)(@)),

wheres € (), joo(s) is the infinite jet ofs, « € M. The general case reduces to the even
one, sinceFiin (1) = Fiin (7% @ (xH).

Remark 3. The maps
Joo : T(%) = M%), joo: T@HT) - M((xk)™),

give rise to a map of supermodulgs : I'(mr) — (o).
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Tbe infinite jet bundler,, : J° () — M admits a natural flat connection such that the
lift X of a vector fieldX on M is uniquely defined by the condition

Vf((_f) =XoVy, f€Fin(m).

In coordinates, the lift 08/dx; is theith total derivative

Vector fields of the formX generate am-dimensional distribution o*°(x) called the
Cartan distribution and denoted b{(;r). Obviously, the Cartan distribution is Frobenious
in the sense thatC[x), C(7)] C C(x). In coordinate language, the Cartan distribution is
spanned by the total derivatives.

2.3. Horizontal calculus and evolutionary fields

Let& : B — M be a vector bundle and’ () : B xy J® (@) — J*®(n) its pull-
back alongr,,. TheC* (J*°(r))-supermoduld(z%, (§)) is defined as abovei(x}, (§)) =
1) ®coomy C(J®(m)), if £ is even, and(}, (§)) = Ik (6)° ® Ik, (6)1, with
N ()0 = M, (9)°) and Nk, (9) = (I, (9)H ™) T if £ is a general superbun-
dle.

Definition 2. A C*°(J*°(r))-(super)moduleP of the form P = I'(w} (£)) is said to be a
horizontal module.

Example 1 (Horizontal forms). Let be theqth exterior degree of the cotangent bundle
to M. The corresponding horizontal moduléz? (&) is called the module dfiorizontal
formsand is denoted byl (). In coordinates, horizontal forms are generated by the forms
fdx,-l ZANRIREIVAN dx,-q, f € .7:(7'[)

Definition 3. Let P andQ be C*°(J*°(x))-(super)modules. Amap : P — Q is called
C-differential operator (or horizontal operator) if it can be written as a sum of compositions
of C*°(J*())-linear maps and vector fields of the fotxn

In coordinates¢-differential operators are total derivatives operators.

Example 2 (The horizontal de Rham complex). We define the first horizontal de Rham
differentiald : F(r) — AY(w) = AL (M) ®cour) F(r) by the formulad(f)(X) = X(f).
In coordinates, we hawé(f) = 3, D;(f)dx;.

The general horizontal differentidl: A7(xr) — A%t1(x) is defined by the usual rules:

dod=0, d(w1 A @2) = dw1 A w2 + (—=1)w1 A dwo, w1 € Al(n).

The differentiald is aC-differential operator.
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The cohomology of the horizontal de Rham complex
0> Fm3AlmS ... LA%m) - 0

are calledhorizontal cohomology and denoted byH4 (7). From Vinogradov's ‘one-line
theorem’[12—14]it follows that H? () = HY(M) forqg < n — 1.

All C-differential operators fron® to Q form aC*(J*° (rr))-(super)module denoted by
CDiff (P, Q).

Clearly, if P andQ are horizontal, then so &Diff (P, Q).

Given a horizontal moduleP, let us define thenhorizontal infinite jet bundle 7p :
J®(P) — J*®(x) as follows. If P is even, then the fiber af*°(P) over6 e J*®(x)
consists of equivalence classes, denoted(py(), of elementyp € P. Two elementyp;
andp, are equivalent if their total derivatives of all orders coincide.&or a general hori-
zontal supermodul®, we as always definﬁ‘}, = T po andn}, = nggl)n. Correspondingly,
I(p) = Nz po) ® I prym)™. .

Clearly, the horizontal jet bundbep : J°(P) — J*(x), P = I}, (§)), is isomorphic
to the pullbackr}, (5x) @ J*E) xy J® (@) — J*¥(x) and, thus [ (p) is a horizontal
module.

Similarly to Remark 3we have the natural operatpyg, : P — J®(P).

For everyC-differential operatorA : P — Q there exists a unique homomorphism of
C>®(J*®(m))-supermodules 4 : J®(P) — J°°(Q) such that the diagram

is commutative.

Let us recall the definitipn gf adjoint operator. Cpnsidzere CDiff (P1, Pp). Thead-
joint operator A* € CDiff (P2, P1), P = Homg) (P, A" ()), is uniquely defined by the
equality*

(b, A(p)) = (=D)*P(A*(p), p), pePr pe Py 1)

where(., -) is the natural pairing® x P — H" ().
In coordinates, we have

D_aiD:
T

whereaﬁ € F(m), the superscript ‘st’ denotes the supertransposition,/ang D;, o---o
Di|r\ fort=1iq,..., im.

* st

’

> =)D, odf
T

1 Here and below, symbols used at the exponents-aj stand for the corresponding parity.
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Equivalently, adjoint operator can be defined using the following fact. Consider a hori-
zontal moduleP and the natural complex

0— CDiff (P, F(xr)) — CDiff (P, AL(%)) — CDiff (P, A%(m)) — - -
— CDiff (P, A" (%)) — CDiff (P, A"()) — 0

with the differentialA — d o A. Denote its cohomology b¥?(P). We have

2P = 9 for 0< g <n. (2)
H"(P) = P

Each(-differential operatorA : P — Q gives rise to a cochain map between two such
complexes. The corresponding map of it cohomologyA* : O — P is the adjoint
operator. Note that the natural projectian: C Diff (P, A" (w)) — P has the formA —
A*(1).

Recall the most important properties of adjoint operators:

(1) A andA* are of equal parity;
(2) (A10 Ax* = (=D41424% 0 AT,

(3) A** = A (here we identify? and P).

A vector field Z on J*°(x) is calledvertical if Z|c~ ) = 0. For a horizontal module
P a vertical fieldZ generates a natural actigh: P — P, which in coordinates is the
component-wise action.

A vertical vector fieldZ is said to besvolutionary if [ Z, X] = O for all vector fieldsx
onM.

It is easy to see that evolutionary fields are uniquely determined by their restrictions to
Fiin (E), whereE is the space of the bundie: E — M. Moreover, the mag — Z|5,, (k)
is a bijection between the set of all evolutionary fields and ldegy) (Fiin (E), F(x)). We
identify Homcoo (ar) (Fiin (E), F(mr)) with the horizontal modulé(r}, (7)) and denote it by
2 (7).

In coordinate language, the evolutionary field that corresponds to a vector fupction
1 ..., ¢™ hasthe form

.0

— Jy —
2,=3 :Df«o)auj.
JT T

(¢

Let P be a horizontal module. THénearization of an element € P is aC-differential
operatortr : »(wr) — P defined by the formula

tr(p) = (=1)%s,(F).

Denote by the square brackets the horizontal cohomology class of a horizontal form. Since
evolutionary fields commute with the horizontal differential, the conomology ¢, 6]
for w € A™(x) is well defined by §]; denote it bys,([»]). By (1) we have

9,([0]) = [PA@)] = (=D*’[Lu(@)] = (¢, £;,(D) = (¢, E(0)),
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wheref : A"(r) — 3(7), E(w) = £5(1), is theEuler operator, which takes Lagrangians
to the corresponding Euler—Lagrange equations. Of course, the &adyeés completely
determined by the cohomology clasgg [

In coordinatesE(L dx! A --- A dx") = (SL/Sul,...,8L/su™), wheresL/su/ =

> (=D D (AL /oul).

Remark 4. From Vinogradov’s ‘one-line theorenjl2—14]it follows that:

(1) ker€/d(A™ () = H*(M);
(2) vy eim&ifandonly if £ = £y.

2.4. Differential equations

Again, consider an elemeifit of a horizontal moduleP. The locus
&% = {Joo(F) =0} C J¥(m)

is calleddifferential equation defined byF'. We assume that the natural nstp — M is a
subbundle of the bundle : /() — M. The restriction of the Cartan distribution£&°
is denoted by’(#). Clearly, dimC(¢) = dim (C) = n.

Example 3 (Evolution equations). Consider the bundle E x R — M x R. Denote the
coordinate alon@ by ¢. Then9s = D, — (9/3¢) is a canonical evolutionary field off° (7).

In coordinates® = (ul,...,u™). Leta,, be a family of evolutionary fields oi™ ().

The equatiols®™ c J°° () given by the elemenk = @ — ¢(r) € »(7) is calledevolution

equation. In coordinates, it has the form = ¢(r). Note thats>™ = J*°(x) x R, with the

Cartan distribution generated by that §t (;r) and the fieldD; = (3/91) + 9,

The restriction of the linearizatiof to the equatiors™ is called thelinearization of
&% and is denoted by, : »c — P, wheres = ()| gc.

An evolutionary field tangent t5 is said to be aymmetry of the equation. Obviously,
9, is a symmetry if and only if<(¢) = 0, ¢ € ».

The horizontal de Rham complex off° () can be restricted t¢*. Its cohomology
are calledhorizontal cohomology of equation ¢ and denoted byH9(¢). Elements of
H"~Y(&)/H"~1(M) are conservation laws of . If the equation at hand satisfies the
conditions of Vinogradov's ‘two-line theoren{12—14] then there is an inclusionh :
H"Y(#)/H"~1(M) — ker¢%. The element(n) € ker¢*: c P that corresponds to conser-
vation lawn is called itsgenerating function.

In particular, evolution equations satisfy the conditions of the two-line theorem. In this
case;(n) = E(no), wheren = no + n1 A dt, no € A" 1), n1 € A"2(#). Thus, to find
conservation laws of an evolution equation one has to solve the equtiph = 0 and
choose those solutions that fulfill the conditionty, = £7,.

Let #* and#* be two differential equations. A surjective map ¢ — ¢ is called
covering if it preserves the Cartan distribution.
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Example4. A horizontal jet bundlerp : J°(P) — J°(r) is a covering. A generalization
of this example will be discussed 8ection 5

Example5. Let#™ be given by an elemerk. Consider equatios™
or or or

=Oa_= s A = ey T = ) 3

S =8 e =& 3)

whereg1, ..., g, are functions of1, ..., x, andu{}. If the compatibility condition
Di(g)) = Dj(g) on 6™ & dylsx =0 n=Y)_ gdy € A'©) “4)

1

holds true, then the natural projection > — £ is epimorphic. Obviously; preserves
the Cartan distribution, so that it is a covering. Thus, each closed horizontal one-form gives
rise to a covering of the forni3). In particular, whem = 2, condition(4) means that
n represents a conservation laws3f. The new dependent variabtds callednonlocal
variable.

In a similar way, we can define a covering o0&t corresponding to a closed one-form
on this equation, etc. In this manner we construct particular coveringsdtions 6—8

Clearly, eaclt-differential operatorA on £* can be lifted to @-differential operatort
on . In particular, we have the operateron €. A symmetry of2* is called anonlocal
symmetry of ¢ in the covering under consideration. Solutions of the equation) = 0
are calledshadows of nonlocal symmetries of £ in this covering. In a similar way, since
the horizontal de Rham differential isCadifferential operator, we can lift the horizontal
de Rham complex t&*° and construct the theory @bnlocal conservation laws in our
covering. Solutions of the equatié?(l/f) = 0 are callechonlocal generating functions.

3. Variational Schouten bracket

We start with a super version of Kupershmidttgangent bundle to a vector bundle [9].
For a vector bundler : E — M, dimM = n, we consider the bundlg : £ =
E*Qy A" (T*M) — M,whereE* — M isthe dual bundlet& — M, andthe superbundle
K : K° = 7 (even subbundle);! = # (odd subbundle).

The superbundli€, : J®K) > M

Je(K)
The (ffoc)
Koo Jo ()
M/

is called thecotangent bundle of the bundlez. It is clear that

JZ(K) = T (N, (o))
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Denote byp/, j = 1, ..., m, the fiber coordinates i dual tou’ with respect to a volume
form on M (they are sometimes called ‘antifields’). Thenur, p? will be the coordinates

in J°°(IC), with x;, uZ being even anqbf belng odd.
It is clear that%(IC)o = s ands<(K)* = 341, wheresee = I(K* (7).
Define thevariational Schouten bracket (antibracket) on the spacéf” (XC) by putting

[F. H] = (E(H), a(E(F))), F,H e H"(K), ®)

where€ is the Euler operator and the operator (K) — (K) acts according to the
formulaa(y, ¢) = (¢, —v) for ¢ € s andyr € 3. In coordinates, we get

’ (Sul (Spf (Sul 5pj

Itis readily seen that the variational Schouten bracket defines a Lie superalgebra structure
on H"(K):

[H F] = —(-)FVEDLE [,
(—)FFVEHVIN F, G, H] + (—1) O VED[ G, H], F] +
(- H, F], G =0.

Remark 5. A different concept of the Schouten bracket (acting on a different space) the
reader can find ifil5, p. 226]

Denote byC Diff f,f)eW(P Q) the module ofk-linear skew-symmetri€-differential op-
eratorsP x --- x P — Q. The subse€ Diff S24(p, P) ¢ CDiff Sk*W(p, P) consists of

(k) (k)
skew-adjoint in each argument operators.
Let us define multiplication

CDiff (P, F()) x CDiff $M P, F()) — CDiff S (P, F()).
by setting

(A1A)(p1. . prr) = Y, (=17 A1(Poa.0) A2(Potk1.441)-

"ESHI

where Ay € CDiff 5P, F(m)), Az € CDIiff (P, F(m)), S C S, is the set of all
(i, n — i)-unshuffleq10], i.e., all permutations € S, such that(1) < o(2) < --- < o(i)
ando(i +1) < o(i+2) < --- < a(n), (—1)? is the sign of permutatiosr, and pyi, k,)
stands fompo(ey). - - - . Potky)-

Next, since by definition elements ¢f(w) are identified with differential operators
from I'() to C*° (M), we have the natural inclusi@hDiff (3(), F(xr)) — F(K), which
uniquely prolongs to the isomorphism of algebras

CDiff 5 2(m), F()) — F(K).
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Using(2) we can show in a standard way that
H"(K) = CDiff $292(m), 3¢()) @ H" (). (6)

Below, we use the shorthand notatign= ().

Now, following [2], we want to compute the variational Schouten bracket in terms of
skew-adjointC-differential operators.

To this end, note that from the definition of the Euler operator it follows that its restriction:

El it skene, oy * € DIff G552, A" () — C Dt G5z, 22) @ CDiff ) (3 50),
has the forn€| . o skew(, o (A) = (1(4), (=D 1u(A)), where

DAL, V) = Ca gy (D

.....

wAW1, ., Yk-1) = (AW, ..., Yk-1))*(D),

Vi € 32, 8A ... (@) = O (A) (Y1, - .., k).
In coordinatesy = (8/8u?, ..., 8/8u™) andu = (—1)*=1(8/8pt, ..., 8/5p™).
We can rewrite; in the following form:

n(A) =7i(u(4)), A eCDiff G, A" (),
where
WO ¥ =€, (), O eCDiff G (3, 50).
Indeed, take the equality
[AW1, ..., )] = (OW1, ..., Yi-1), Vi), 0 = u(4),
and apply?, to both sides. This yields
[Po(A) W1, ..., )] = (O W1, - .., Vi), ),
and so
(@ Ca g D) =0l (0)
Thus, for the variational Schouten bracket of two operators C Diff f,'j‘_e‘ﬂ(;%, ») and
B € CDiff 5, ) we have
([A, BI(Y1, - . ., Yk41-2),s Ykti1-1)
= (D" (B A = D" VG B W1, .. Yis1-0]
=D Y DU gy Vo) AWoui k1)) — (DR

!
oES 1

x> DN e Vo)) BWott1k+-1))-

k
eS8 11

Here and below we assume tt#it= @ if i < 0 ori > n.
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Let us split the sums obtained into two parts depending on whether/ —1) = k+1—1
or not:

(LA, Bl(Y1, - o, Yrt1-2), Ykt1-1)
=D Y 0o Vo) AWour1k+1-2)» Yksi-1))

B Yo(1.1-1)

o€ 2
+ D DY Boor s Witi-Ds Ao it1-2)) — (=DFD
oE€Si 2
XD D gy Wot)s Bt Lit1-2), Yisi-1) — (=1« DD
UGS;’;H
X Z (_1)0(52,1#0(1,1(71)(wk""l—l)’B(Wﬁ(k,k-i-l—Z)))-
oeSi o

Thus, we have

[A. Bl(Y1. ..., Yiy1-2)
- Z (=D o1 (AW ksi—2)) — (—HEDED

—1
oS

XY CDTBER gy Woto): Yotk 1at1-2) — (=D EDED

k
OES 2

XY (=D oy (BWotkti-2)

1
0ES o

+ Y CVTAW ., Vo) Vo1 k4i-2)- 7

€S 412
From the definition it immediately follows that:
[A, 0] (W1, ..., Yk—2) = A(E(®), Y1, ..., Yx—2)

for w € H"(); in particular, [p, o] = (¢, E()) = 9.(w).

4. Hamiltonian evolution equations

An operatorA e CDiff (5, 5) is calledHamiltonian if [ A, A] = 0. As in the classical
Hamiltonian formalism, a Hamiltonian operator defines a Lie algebra structuf&’ amn)
via the Poisson bracket

{w1, w2}a = (A(E(w1)), E(w2)).
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Remark 6. Hamiltonian operators are uniquely determined by the corresponding Poisson
brackets.

Remark 7. A Hamiltonian operator gives rise to a complex
0— A" (m) % 524 CDIff (52, 300 % CDIfF $3952, 50 % .. 8)
whereds(A) = [ A, A], called theHamiltonian complex.

Formula(7) yields a well-known criterion for checking a skew-adjoint operator to be
Hamiltonian (see, e.g[1,8]):

[A, A1, ¥2) = —La yy (A(Y2)) + L,y (A(Y1) — ALY 4, (¥2)) = 0.

Another practical way to check the Hamiltonian property of an operator is to use formula
(5). In coordinates, it gives:

W4 W, L Wy §W,
> 4274 _ 0 modulo total derivatives o€ > 42741 =0, (9)
oul 8pJ Sul SpJ

whereW, e H"(K) is the element that corresponds to the operatou@der the isomor-
phism__(6). In coordinates, the eleme#it, for an operator) . a’ D, has the formw, =
p aipip'.

The condition for two Hamiltonian operators and B to be a Hamiltonian pair, i.e.,
[A,B] =0,is

Wy W SWp §W
Ye(sr—r+—r—r])=0
- oul SpJ dul 8pJ

Note that the skew-adjointness in termsf amounts to the equality

SWa
> S =—2Wa (10)
; P

Let A be a Hamiltonian operator. Evolution equatign= f is said to beéHamiltonian with
respect toA if

At_l[At f]l =O’ (11)

whereA, = dA/dt (both A and f can depend on the parameter

If A does notdepend afnthen foreacl € H" () the evolution equation, = A(E(H))
is a Hamiltonian evolution equation. The elemeéhte H" (i) is called theHamiltonian.
Notice that in this case conditiaii1) means thaff is a one-cocycle in the Hamiltonian
complex(8). A Hamiltonian H exists if and only iff is a coboundary.

If a HamiltonianH exists and does not depend @then we have

Di(H) = 9¢(H) = 94euny(H) = {H, H}4 = 0.
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Thus, there exists a conservation law giveroy- n1 A dr, no € A™ (), n1 € A" 1(n),
such that fo] = H € H" (), where fjo] is the cohomology class af in H” (). In other
words, the generating function of this conservation law eqf@g. This conservation law
is called theconservation law of energy.

Theorem 1. Let £ be an evolution equation u, = f which is Hamiltonian with respect
to a Hamiltonian operator A. Then we have

leo A+ Aol =0. (12)

Proof. By (7)
(A —[A, fDW) = Ai(¥) + €ay () — AWLE)) — L (AW,
thus
A=A f1=A+35(A) — Aol — Ly 0 A.
Hence,((8/0f) + 9y — £f) o A — A o ((3/01) + 9 + JZ’}) = 0. It remains to note that
be=D;— Ly = (3)3) + 55 — L5 O

Remark 8. For equations possessing a Hamiltonian, relatidt) can be found elsewhere
(see, e.g[11]).

We call solutions of(12) variational bivectors on the equation under consideration;
Hamiltonian operators that make a given equation Hamiltonian are, thus, special varia-
tional bivectors on the equation. Obviously, variational bivectors (and, in particular, Hamil-
tonian operators) take generating functions of conservation laws of the equation at hand to
symmetries of this equation.

Proposition 1. Let > be an evolution eguation u, = f. If two operators A, A’ €
C Diff (3, ) satisfy the equation

leoA+ A ol =0, (13)
thenA’ = A.
Proof. Rewrite(13)in the form

(D —tp)oA—A'o (D,+Ef;-) =0.
Commute the right-hand side of this equality with the operator of multiplication Blis

givesA’ = A. O

5. A-coverings

In this section, we describe a construction, that reduces soluti&.of12)to finding
shadows of nonlocal symmetries in a special covering s\(#re £;-covering).
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Let ¢ be a differential equation, andl : P — Q be aC-differential operator between
two horizontal module® and Q overs>. Consider the homomorphishy : J®(P) —
J>°(Q) that corresponds ta. If K, = kerh, C J®(P) is a subbundle of*°(P), then
ka =mplk, : Ka — ¢ is a covering. We call in-covering.

In terms of local coordinates, it = H do: agDr H andw’ are fiber coordinates af,
wherew is such thatP = I'(«@), thenA-covering is defined by the equations
Zag u){ =0. (14)
7

We can think of fibers ofA-covering as even or odd. Here we prefer the latter viewpoint,
so thatk 4 is a superbundle.
A-coverings are useful mainly due to the following obvious fact.

Proposition 2. Let R = I'(y) beahorizontal moduleover £°°. Thenthereisanisomorphism
ﬂin(kZ(y)) = CDiff (P, R)/{V € CDIiff (P, R)|]V =00 A, O € CDIff (Q, R)},

where I, denotes space of fiberwise linear sections.

Proof. The isomorphism takes € Tiiy (k% (y)) to the equivalence class of the operator
Vs . P — R given by the formula

Vs(p) =50 joo(p),

wheres is an extension af to J®(P), p € P. O

In coordinate languagd), at the jth component of the operator goesuté.

Now suppose that we are giverCaifferential operato®V : R — R’ over&®™. Let us
liftiton K 4 and consider kev. In view of Proposition 2we can identify fiberwise linear
elements of ke¥ with solutionsV e CDiff (P, R)/{T0 o A} of the equation

VoV=VoA. (15)

Thus, (15) amounts to the equation V(s) = 0 on the A-covering.

In particular,Eq. (13)is equivalent to the equatidty(¢) = 0 on thef}-covering, where
¢ is fiberwise linear vector function. Note that in this casegheovering can be identified
with the cotangent bundlg> () x R. Under this identification, the Cartan planeslop
are spans of the Cartan planes 88 (K) and D; = (3/dt) + 27, Wheref (f E* (w))
if the equation at hand i8, = f. Moreover, the equivalence classes of operators from
Proposition 2are in one-to-one correspondence witHifferential operators od*° (x).

Remark 9. Fromthe above said, we see that Hamiltonian operators are shadows of nonlocal
symmetries in thé}-covering.

Remark 10. SolutionsV e CDiff (P, R)/{do A} of Eq. (15)can be found straightforwardly
and the computations will be essentially the same as when one solves the e§iatien
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0 on theA-covering. Nevertheless, in our computations we prefer the second approach,
becauseinthe cas= {.itreducesthe problemto finding shadows of nonlocal symmetries
(see above) for which efficient software exists.

6. TheKorteweg—de Vriesequation

Here we show how the above introduced techniques work with a simple and well-known
example of the KdV equation

U = Uxxx + UUy. (16)
Local coordinates ik™> are
Xy, U = UQy - v vy Uy v v vy

whereu; = 3u/0x* (similar notation is used in the subsequent sections as well). In these
coordinates, the total derivatives are

9 9 9 . 9
D, = — e D, = — D uuy) —.
v = + kgo Uk+1 ™ P=a + kgo (43 + uuy) "

6.1. The ¢}-covering

The linearization operator fqi.6) is
te = D; — D3 —uD, — u1,
while the adjoint is expressed by the formula
¢t = —D, + D2+ uD,.

Following the general scheme, we constructfheovering by introducing the odd variables
p = po, pr = DX(p) that satisfy the equation

Pt = p3+ Up1.
6.2. Solving the defining equation

Let us now extend the total derivatives up to the total derivatives ofttevering
- 9 - <y d
Dy=Di+ ) prsi— D,=D,+2Dx<ps+up1)%.

)
k=0 Pk k=0

Then, solving the equatiofy(F) = O, that is
Di(F) = D3(F) + uD(F) + u1 F 17)
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with respect to the functiod” = ), F; p;, whereF; = Fi(x,t, u, ..., ux), we obtain two
independent solutions

F° = py, F'= P3+§U|01+%u1po,
to which there correspond twédifferential operators
A% =D, Al = D3+ 2uD, + 1uy,
the classical Hamiltonian structures for the KdV equation.

6.3. The Hamiltonianity test

To demonstrate how the method works, we shall check the Hamiltonianity of the operators
A% and Al in a straightforward way. Obviously, both operators are skew-adjoint.
For A%, the corresponding bivectdvy = W 4o is

Wo = F°po = p1po.
SinceéWp/éu = 0, we get
SWo W
g 2Xo°%0) _ g
du 8p
For A, one has

W1 = F'po = (p3+ §up1+ 3u1po) po = p3po + Sup1po.

Consequently
Wy 2
“Su = éplPO,
and
56—2‘;1 = % - Dx% - DE% =- (Ps + gupl) — Dy <§UD0> — D{(po)
= —2p3— ilUpl - gulpo-
3 3
Hence
W1 W1 4 4
u o 3PoP1P3 = Dy <§pop1pz> ,

that impliesE((W1/8u) - (SW1/8p)) = 0.

Remark 11. In [6] we describe a class of equations which have the property(i2at
automatically implies the Hamiltonianity. In particular, KdV belongs to that class, thus the
above verification might be skipped.
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6.4. Nonlocal Hamiltonian structure

Let us introduce a new (odd) nonlocal variable determined by the equations

Fx = u1po, rr = u1p2 —u2p1+ (UUL + u3) po
(seeExample §. Then an additional solution &q. (17)arises:

F? = ps+ 3ups + 2u1ps + (§u® + Su2) p1 + (fuur + Luz) po — Jurr,
to which there corresponds the operator

A? = D3 + JuD? + 2u1 D? + (§u® + 3u2) Dy + (§uuy + Juz) — Jui Dyt o us.
Remark 12. Here and below we use the following correspondence between nonlocal vari-
ables and operators (in the case of evolution equations with one-dimensjobet p]j( be

the variables in the fibers of th#-covering and nonlocal variablebe determined by the
relations

=X dpl. =3
k,j k,j
(cf. Example 5. Then the corresponding operatty acts onp = (¢1, ..., ¢"™) by

Ae) = D[ Y@ Do)
k. j

Simulating the techniques developed for the local case, it is a straightforward check that
AZ? is a Hamiltonian structure and all three structures are pair-wise compatible. Moreover,
they are related to each other by the classical recursion operator

R=D?+ %u+ }u1D; %,
i.e., Al = Ro A®andA2 = R o AL. In a similar way, one can find a whole infinite series
of nonlocal Hamiltonian structures for the Korteweg—de Vries equation.

Remark 13. We stress here the wosiimulating above: at this moment, we do not have a
consistent theory of Hamiltonian structures in the nonlocal setting. We hope to develop it
elsewhere.

7. The Boussinesq equation

In this section, we shall present, as another illustration of the above developed meth-
ods, computation of local and nonlocal Hamiltonian structures for the classical Boussinesq
equation. We consider this equation as the system of the form

Up = Uxv + Uy + oy, Ui = Uy + Uy, (18)

whereo € R is a constant.
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All computations presented below were done by the software system described in
[7, Chapter VllIJand we expose here final results only.

7.1. The £}-covering

The linearization operator restricted4® is

00— vD, — Dy an—i—ul
¢ D, vDy+v1—D; )’

while the adjoint one is expressed by

o —vDy — v1 + Dy —Dy
£ —ODE +u1 —uwD,+ D, )’

Hence, theZ%-covering with the odd nonlocal variables, g; is defined by
pr = vP1+v1p +qa, qr = op3 — u1p + vQp.

7.2. Local Hamiltonian operators

In a completely similar way as described for the KdV equation in the previous section,
we solved the symmetry equation in tbzcovering of the classical Boussinesq equation.
We found three local solutions of the form

Fl=q, G'=py

F? = 20p3 + 2upy + u1po + va1, G2 = vpy + vipo + 2q1;

F3 = 4ovpg + 6ov1 p2 + 2(30v2 + 2uv) p1 + 2(0v3 + Uvg + u1v) po
+4oqsz + (4u + v¥)q1 + 2u1qo,

G3 = dops + (4u + vz)pl + 2(u1 + vv1) po + 4vQ1 + 2v19o.

In classical operator notation, they are represented as

(0 Dx> A2 20D3 4+ 2uD; +u; vD,
D, 0)° Dy + 11 2D, |’

while the third operator has the entries

A%l = 40va + 6001D§ + 2(3ov2 4 2Uv) Dy + 2(ov3 + Uv1 + 11v),
A3, = 40D+ (4u+v*)Dy + 2u1, Ay =40D3 + (4u +v*) Dy + 2(u1 + 1),
Agz = 4D, + 2v1.

7.3. Hamiltonianity and compatibility

To test Hamiltonianity and compatibility conditions for the operatéts A2, A3, we
construct the bivectors
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W1 =q1po + piqo,
W2 = (20p3 + 2Up1 + u1po + vth) po + (vp1 + v1po + 291)qo,
W 43 = (4ovps + 6ovy p2 + 2(30v2 + 2Uv) p1 + 2(ov3 + Uv1 + u1v) po
+4oq3z + (4u + v¥)q1 + 2u1q0) po + (4opz + (4u + v?) p1
+ 2(u1 + vv1) po + 4v01 + 2v190)9o0,
and straightforwardly check that

i.e., the operatord?, A2, A% meet both Hamiltonianity and compatibility conditions.

7.4. Nonlocal Hamiltonian operators

In order to describe nonlocal results we introduce three new nonlocal variabtesrs
over the¢’-covering by the following definitions:
F1x = pou1+qovi, rir= p20ov1— p10ov2+ po(ovs+ Uvy +u1v) + go(u1 + vvi);
r2,x = po(ovs + Uvg + ugv) + go(ug + vvy),
ro.r = p2o(u1 + vv1) — pro(uz + vvp + v%) + po(ousz + 20vv3 + 3ov1v2 + UUL
+ 2uvv1 + u1v?) + go(ovz + Uvy + 2u1v + vvy);
r3.x = po(douz + 6ovvz + 120v1v2 + 6uUuy + Buvyy + 3u1v2)
+ go(4ov3 4+ 6uv1 + Bu1v + 3v2v1),
r3; = p20o(4ovz + 6uvy + Guqv + 3v2v1) + p1o(—4ovg — 6UV2 — 12u1v1 — Bugv
— 3v%vy — 6vv?) + po(4o?us + 100uvz + 180u vz + 180uzv1 + 100uzw
+ 9crv2v3 + 30cvvivo + 601)? + 6u2v1 + 12uuyv + 9UU2U1 + 3u1v3)
+ go(4ou3z + 100vv3 + 120v1v2 + 6UUL + 12Uvv1 + u1v? + 3v3vy).

Using these nonlocal variables, we derived the following three nonlocal Hamiltonian struc-
tures given by
F*=80%ps + 20(8u + 3v?) p3 + 60(4u1 + 3vv1) p2 + 2(8ouz + Yovvs + 6011%
+ 4l + 3UU2)p1 + (dousz + 6ovvz + 120v1v2 + 8uuy + Buvvy + 3u1v2)po
+ 120v03 + 2000192 + (16002 + 1200 4 v3)q1
+ 2(20v3 + 2uv1 + 3u1v)go — 2u1r1,
G* = 120vp3 + 160v1 p2 + (12002 + 12uv + v°) p1 + (dovs + 8uvy + 6uiv
+3v%v1) po + 8093 + 2(4u + 3v*)q1 + 2(2u1 + 3vv1)qo — 2v1r1;
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320%vps + 8002v1 pg + 80(14ovz + 8uv + v°) p3 + 40(220v3 + 24uvy

+ 24u1v + N2v1) po + 4(100°vs + 200Uvy + 260u1v1 + 160u2v + 9ov%v)
+ 1201)1}% + 8uv + 2uv3)p1 + 4(2621)5 + 60uvz + 11louqvo + 9ourvy
+4dousv + 30v2v3 + 120vv1v2 + 3(71)% + 4u2v1 + 8uuiv + 3UU2v1 + u1v3)po
+ 1602615 + 8o (4u + 3v2)q3 + 160(3u1 + 5vv1)g2 + (320uz + 64ovv2

+ 44003 + 16u? + 24u? + v g1 + 4(20u3 + 4ovvs 4 Bovgup + duuy

+ 4uvvy + 3u1v?)qo — durry — 4(ovs + vy + ugv)ry,

= 1602p5 + 8o (4u + 3v2)l73 + 160(3u1 + 4vv1) p2 + (320uz2 + 480vv2

+ 28011% + 16u? + 24w’ + v4)171 + 4(20u3 + 4ovvz + 8ovivo + 4uuy

+ 8uvvy + Bu1v? + vgvl)po + 320v03 + 480v1g2 + 8(4ovz + 4uv + v3)q1
+ 4(20v3 + 4uv1 + 4duqv + 3v2v1)qo — 4uiry — 4(uq + vv)ra;

—3253p7 — 160%(6u + 5v°) ps — 8002(3u1 + 5vv1) pa

— 20(16Quz 4 280wz + 2040502 + 48u? 4 80uv? + 5v*) p3

— 46(600u3 + 110vv3 + 2160v1v2 4+ 72uu; + 120uvvy + 60u1v?

+ 150%v1) p2 — 2(480%u4 + 10002vvg + 244020103 + 168203 + 960U,
+ 200 uvvy + 1360Uv? + 68ou? + 26Qu1vv1 4 800uzv? + 300v3v;

+ 60011211% + 16u + 40u?v? + SUU4)p1 — (1602u5 + 4002vv5 + 12072111114
+ 20802112113 + 48ouuz + 12Q0uvv3 + 2320Uvqv2 + 88ou s + 220uqvv2
+ 1560u1v3 + 180uvvy + 400uzv? 4 200v3v3 4 120020102 4 600003
+ 484%u1 + 80uvv1 4 80uuLv? + 20uvvy + Suv?) po — 8002vQs

— 2245%v1q4 — 400(8ovz + 4uv + v°)g3 — 85(300v3 + 32UV + 30u1v

+ 250%v1)g2 — (960204 + 1920, + 25601101 + 1600120 + 160020

+ 2207vv§ + 80u’v + 40u® + v5)q1 — 4(4a2v5 + 120uv3 + 22011 v2

+ 18ousv1 + 100u3v + 100v2v3 + 30cvvivo + Gov? + 8u2v1 + 20uuqv

+ 1011)201 + 5u1v3)qo + 2u1r3 + 8(ovz + Uv1 + u1v)ro + 2(4ous + 6ovvs
+ 120v1v2 + 6uUUy + 6uvvy + 3u1v2)r1,

= —800%vps — 1760201 ps — 86(280v2 + 20uv — 5v%) p3 — 160(11ov3 + 14uUvy

+ 15u1v + 100%v1) p2 — (80024 + 16Quvz 4 2240u1v1 + 1600u2v

+ 120v%v; + 140002 4 80u?v 4 40uv® 4 v°) p1 — (16025 + 4803

+ 88ou1v2 + 880urv1 + 400uszv + 4Ocrv2v3 + 16Qvvivo + 3601)? + 48u2v1
+ 80uuiv + 80uv2v1 + 201411)3 + 5v4vl)po — 3202q5 — 160(4u + 5v2)q3

— 480(2u1 + Svv1)g2 — 2(320uz + 800vvy 4 52002 + 16u? + 40uv? + Svt)g1
— 4(4ouz + 100vv3 + 160v1v2 + 8uuy + 20uvvy + lOulv2 + 5v3v1)qo

+ 2v1r3 + 8(u1 + vv1)r2 + 2(4dovs + 6uvy + Gu1v + 3v2v1)r1.
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In the conventional notation the operatar$, A°, andA® have the following entries:
11 = 802D5 + 20(8u + 31)2)D3 + 60(4u1 + 3vv1)D ~+ 2(8ouz + 9ovvy + 60v1
+ P + 3UU2)D)% (4ous + 6ovvs + 120v1v2 + 8uug + 6uvvy + 3u1v? )
— 2u1D;1 out,
A%, = 1200D3 4 20001 D? + (16002 + 1200 + v°) Dy + 2(20v3 + 2uvg + 3u7v)
—2141D_:L o1,
A3, =120vD3 + 160v1 D? + (12002 + 12uv + v¥) Dy
+ (4ovs + 8uvy + 6uiv + 32 v1) — 2v1 D 1o u1,
A3, =80D3 4 2(4u + 3v*) D, + 2(2u7 + 3vv1) — 2v1D; o w
The matrix elements oA® are given as
A3, =320%uD° + 800%v1 D? + 80(14ovz + 8uv + v3) D2 4 40(220v3 4 24uv;
+ 24u1v + 9v2v1)D§ + 4(10(721)4 + 200uv2 4 260u1v1 + 160usv + 90v2v2
+ 120vv% + 8ulv + 2uv3)Dx + 4(202v5 + 60uvz + 1louqvo + 9ousvy
+4dousv + 36v2v3 + 120vvqv2 + 36v§ + 4u2v1 + 8uuiv + 3uv2v1 + u1v3)
—4(ov3 + Uvy + ulv)D;1 ouq — 4u1D;l o (ov3 + Uvy + uqv),
A3, = 160D + 80(4u + 3v?) D + 160(3u1 + 5vv1) D2 + (320u2 + 64ovv;
+ 4401)% + 16u? + 24w? + vWhD, + 4(20u3 + 4ovvz + 6ovivy + 4uuy
+ 4duvvy + 3u1v2) — 4(ov3z + Uv1 + ulv)D*1 ovy — 4ulD*l o (u1 + vv1),
21 = +1602D5 + 80(4u + 3v )D3 + 160(3u1 + 4vv1)D + (320u3 + 48ovv2
+ 2801)1 + 16u? + 24w’ + v4)Dx + 4(20u3 + 4ovvz + 8ovivo + 4uuy
+ 8uvvy + 3u1v2 + v3v1) —A(uy + vvl)D;1 o
— 4v1D;l o (ovz + Uvy + uqv),
Agz = 320va + 48crv1D)2( + 8(4ovz + 4uv + v3)Dx + 4(20v3 + 4uvy
+4duv + 3v2v1) — Auy + vvl)D;l oVl — 4v1D;1 o (u1 + vvy).
The matrix elements oA® are given as

AS, = —320°D! + 1602(—6u — 5v%) D® + 800%(—3u1 — Svv) D?
+ 20(—1600up — 2800vvy — 2040V — 4842 — 80w? — 5v) D3
+ 40(—600usz — 110vv3 — 2160v1v2 — 72uu; — 120uvv1
— 60u1v? — 150%01) D? 4 2(—4805%ug — 1005%vv4 — 244020103 — 1685203
— 960uuy — 200 uvvy — 1365Uv? — 680u? — 2600u1vvy — 80ouv?
— 3000%v2 — 6000202 — 16u° — 40u2v? — 5uv*) D, + (—160%us — 400%vus
— 120%v1v4 — 2085%vov3 — 480UU3 — 12QUvuz — 2320Uv1vp — 88ouqur
—220uqvvp — 1560u1v1 180suvvy — 40014311 — 20008 v3 — 120002 V1V2
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- GOovv% - 48142u1 - 80u2vv1 — 80uu1v2 - 20uv3v1 - 5u1v4)
+ 2(4ous + 6ovvz + 120v1v2 + 6UU; + Buvvy + 3ulvz)D;l ouq
+ 8(ovsz + Uvy + ulv)D;l o (ovz + Uvy + uqv) + 2u1D;l o (4ous + 6ovvs
+ 1200102 + 6UUy + Buvvy + 3u1v),

AS, = —800%uD?> — 2245201 D? 4 400(—8ovp — 4uv — v3) D2 + 85(—300v3
— 32uv1 — 30u1v — 250%v1) D? 4 (—960°%v4 — 1920Uvy — 25601101
— 1600uov — 1600020y — 22071111% — 80u%v — 40uv® — v°) D, + 4(—40°vs
— 120uv3 — 220u1v7 — 18ouov1 — 100u3zv — 100v2v3 — 300vv1v2 — 601}?
— 8u®v1 — 20uuv — 10uv?v1 — 5u1v®) + 2(dous + Bovvs + 120v1v2
+ 6uuy + 6uvvy + 3141112)D;1 ov1 + 8(ov3z + Uvy + uw)D;l o (u1 + vvy)
+ 2ule_l o (4ovz + 6UV + Buqv + 3v2v1),

AS; = —800%uD? — 1765%v1 D? + 85(—280vz — 20uv — 5v%) D2 + 160(—11ov3
— 14uvy — 15u10 — 100%v1) D2 + (—800%v4 — 16Qruvy — 2240u1v1
— 16Quzv — 120(71)21)2 — 1407vv% — 80u2v — 40w — v)D, + (—1602115
— 480uv3 — 88ouvy — 88ousv; — 400u3v — 40crv2v3 — 16Qvvyvo
— 36003 — 48u%v1 — 80uu Y — 80uv?vy — 20u1v® — Sutvg) + 2(4ovz + Buvy
+ 6uqv + 3v2v1) D;l ouq+ 8(ug + vvl)D;l o (ov3 + Uvy + u1v)
+ 2v1D;1 o (4ouz + 6ovvz + 120v1v2 + 6UU; + BUvY, + 3u1v2),

AS, = —320%D> + 160(—4u — 5v%) D3 + 480(—2u1 — Svv1) D? + 2(—320u3
— 800wy — 52002 — 16u? — 40w? — 5v*) D, + 4(—4ouz — 100vv3
— 160v1v2 — 8UUy — 20Uvvg — 10uqv% — 5v3v1) + 2(dovs + 6Uv + Bulv
+ 31)2111)D;1 ovy + 8(u1 + UUl)D;l o (u1 + vvy)
+ 2v1D;1 o (4ovz + 6uvy + 6Bu1v + 3v2v1).

Similar to the previous cases, we checked the conditions for Hamiltonianity and compat-
ibility of all six Hamiltonian structures. It is also easy to check that all six structures are
related by the recursion operator constructed for symmetries of the Boussinesq equation,
see, e.g[7].

8. Thecoupled KdV-mKdV system

We shall now describe a Hamiltonian structure for the coupled KdV-mKdV system of
the form

U = —Uxxx + BUU, — Svvxxx — Uy Uxx + 3uxv2 + 6uvvy,

Vi = — Ve + 3020y + 3Uvy + U0 (29)
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This system arises as the so-callmonic limit of the N = 2, a = 1 supersymmetric
extension of the KdV equatiof]; integrability properties of this system (existence of a
recursion operator) were studied [i]. In [3], by means of the prolongations structure
techniques, a Lax pair fqd.9) was constructed.

Denote the evolution equation correspondingli®) by £°° and choose for coordinates
in £ the functions

X, LU =UQ,V=V0,..., UL, Vk, ...

Then the total derivative operators restrictet are written in the form

9
——+Z(Mk+1—+ k+l%)
9
D= — DE(H— + Dr(e)— 20
, 8t+§0< x(ﬂauk+ x<g>8vk), (20)

where

f =—u3+ 6uuy — 3vvz — 3vivo + 3u1v2 + 6uvvq,
g=—-v3+ 3v2v1 + 3uvy + 3uqv

are the functions at the right-hand sidg(d9).
8.1. The ¢£}-covering

The linearization operator restricted4® is

V4 V4
0= 11 £12 ’ 21)
o1 €22
where
t11= Dy + D? — (6u + 3v*) D — 6(u1 + vv1),

l12= 3UD3 + 3le)2c — (6uv — 3v2) Dy — 6uv — 6UVy + 33,
€21 =—3vD, — 3vq, loo = D, + Di’ — 3(u 4 v?) Dy — (6vvy + 3u).

Consequently, the adjoint operator is
o, e
o= ( . fl>, (22)
G
where

iy=—-D,— D3+ 6u+3?)D,, € =3D,,
€, = —3vD3 — 61 D? + 6(uw — v2) Dy, L5y = —D; — D3+ 3(u + v D,.
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Following the general theory &ection 4we now construct thé&;-covering for the equation
£ by introducing new odd variablgs= po, ¢ = qo, - - ., Pk Gk - - - » Pk = DX(P), gk =
DX(g), that obey the equations

pi = —p3+ (6u + 3v?) p1 + 3vqy, (23)

g = —3vp3 — Buipz + 6(Uv — v2) p1 — g3 + 3(u + vI)q1. (24)
8.2. Solving the defining equations
We now introduce a vector function of the form
( F) | ZiF'pi+ Flqi)
G >i(Gpi+Gig) |’
whereF}', F?, G, G} are functions o>, and solve the equation
£ L
11 412 (F):O. (25)
€ )\ G
The operatorgj; here are lifted to théZ-covering, which means that the total derivatives
are now of the form

b, = +Z U1+ V1 + O g,
x 8x k+13 k+18 Pk+18 qk+1

k>0 86]
= ke 9 keoy 9 k 4Dk _
D, = aﬁ%(l) (N3 -+ D, (g) D (f) -+ Ditg 03 ) (26)

where " andg’ are the right-hand sides (23) and (24) respectively.
The following solution was obtained:

F = —p3+ 4up1 + 2u1po + 2vQs, G = 2vp1 + 2v1po + q1,

to which there corresponds the operator

_ (—D3+4uD, +2u1 2uD,
A= ( 20D, + 2v1 D, ) (27)

8.3. The Hamiltonianity test

We shall check now that the operatarpresented by27) is Hamiltonian. The first
property is obvious: evidentlyy* = — A, i.e., A is a skew-adjoint operator.
To check the second property, we construct the bivector
Wa = Fpo + Gao = (—p3 + 4up1 + 2u1po + 2va1) po + (2vp1 + 2v1po + q1)q0
= pop3 — 4Upop1 — 2vPog1 + 2vP190 + 2v1pogo — qoq1,
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and verify condition(9), i.e.

Wy W Wy W
gl=ATA L 2TANTA) (28)
du op v dq
But
SW. W,
A — _4pop, A — _apoga,
Su Sv
SW. SW,
5—pA = 2(p3 — 4up1 — 2u1po — 2v), 6—; = 2(—2vp1 — 2v1po — q1),

and consequently

W4 Wy n W4 Wy
du ép Sv  éq

i.e.,(28)holds.

= —8pop1p3 = Dx(—8pop1p2),

8.4. Existence of a Hamiltonian

Let us show that the KdV-mKdV systeffi9) possesses a Hamiltonian, i.e., its right-hand
side may be represented in the form

<£ ) — AE(X), (29)

where A is the Hamiltonian operator described above ahik the de-component of a
conservation law) = X dx + T dr (the energy).

We computed directly several conservation laws of lower order and obtained the following
results (for the sake of briefness, we omit the correspondiraprhponents):

n:X=v, n2:X=u, 774:X=%(u2+uv2—vv2),
ne: X = 1203 + 24u%? — 6uU; + 6uv* — 30UVVy — 3u2v2 — 8v3v2 + 6vva.

Generating functions corresponding to these conservation laws, that is, vector functions of
the form

06X
) Su
< w) D=1 sx
v
are
p1=0, Y1=1 p2=1, Y2=0; Qa=u+ 3% Ya=uv— vy
Ve = 6(6Lt2 + 8w? — 2up + v — Bovy — vi),
Ye = 12(4u2v +2wd — 5uvy — Buqvy — 3uv — 4v2v2 — 4vv% + vg).

Applying A to £(X), whereX corresponds tg4, we see thaf29) holds.
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Theorem 2. The coupled KdvV—mKdV system (19)isHamiltonian with respect to the Hamil-
tonian operator (27) and possesses the Hamiltonian X = (12 + uv? — vvp)/2. The corre-
sponding energy is given by the form
n = %(u2 +w? - vuo) dx + %(4u3 + 9u? — 2up + 3u® — 1luvws + uv% + ui
—uqvv] — 4u2v2 — 6v3v2 - 3v2v% + vvg — VU3 + v%) dr.
This structure is unique in the class of Hamiltonian structures independent of x and ¢ and
polynomial in uy, vg.

Proof of uniqueness. Let us first note thaEq. (19)admits a scaling symmetry that allows
to assigrgradingsto all variablesy, ¢, uy, anduvy:

x| = -1, lt] = =3, lukl =k + 2, loel =k +1,

the grading of a monomial is the sum of gradings of the factors entering this monomial.
In particular,| f| = 5, |g| = 4. All constructions are in agreement with these gradings
and we may restrict computations to homogeneous components. Since the grading of the
expressiomBE(X) is |B| + |E(X)|, we conclude that the grading of the generating function
E(X) is less than that of the right-hand sidg®9). This fact restricts the choice of possible
Hamiltonians just to several ones and by a direct computation we find that the only possible
solution is given inTheorem 2 O

8.5. Discussion: nonlocalities

In spite of the previous result, we have constructed another Hamiltonian operator for the
system under consideration. This operator exists in an appropriate nonlocal setting. First,
we introduce a new nonlocal variahledefined by

Wy =V, w,=3UU~|—v3—v2,

and corresponding to the conservation law(seeExample 5.
In this nonlocal setting, it is possible to extend #fecovering by adding odd nonlocal
variablesr1, r2, r3 defined by the relations

r1,x =qov1 + pouz,

ris=—qzv1 + pa(—u1 — 3vv1) + q1v2 + p1(uz + 3vvz — 3v9) + go(3uvy + 3uv
+ 3v2v1 — v3) + po(6uuy + 6uvvy + 3u1v2 — u3z — 3vvz — 3v1v2);

rox = %qo cos(2w)vy — %qo sin(2w)u — po COS(w)(%ul + vv1)
+ po sin (2w) (uv — 2v2),

ros= —%qz cos(2w)vy + %qz sin(Qw)u + %pz cos(2w)(u1 — vv1)

+ 1 pasin2w) (Uv + v2) — g1 c0S(2w) (U + Sv2) — g1 5in2w) (Su1 + vo1)



P. Kersten et al./ Journal of Geometry and Physics 50 (2004) 273-302 299

- p1 COS(2w)(uv2 + %uz + %vvz + gvi) + p1 Sin(2w)(guv1 + %ulv
—v%vy — %Ug) + %qo cos(2w) (Suvy + u1v + v%v1 — v3) + qo Sin(2u))(—%u2
— %UUZ + %uZ—i— %vvz + v%) + po coSs(2w)(—3uuy — 6uvvy — %’ulvz + %ug

— 3 + %vvg + gvlvz) + po Sin(2w)(3u2v +uwd - %Uvz — 3uqv1

_ %uzv — %vzvz — 3vv% + %v4);

r3x = —%qo cos(2w)u — %qo sin(2w)v1 + po cos(2w) (Uv — %vz)
+ posin (2w) (3u1 + vvy),

r3.: = 2g2 COSQ2w)u + 3g2 sin2w)v1 + 3 p2 cos2w) (uv + vp)
+ 32N (2w) (—u1 + vv1) — g1 COS(2w) (Fu1 + Vv1)

+ g18in(2w) (U — 2v2) + p1cosw)(Suvy + Surv —v?

vy — 3v3)
+ p1sin(uw) (Uv® + Juz + vz + 3v9) + go cosw) (—3u? — Fur?
+ %uz + %vvz + v%) + %qo Sin(2w)(=5uvy — u1v — v2v1 + v3)

+ po COS(2w)(3u2v +wd — %uvz — 3uqvy — %uzv — %vzvz — 3vv% + %v4)

2 3 5

+ po Sin(2w) (3uuy + 6uvvy + %ulv — %ug + v3vy — 5VU3 — 5V102).

In this extended settind;q. (25)acquires a new solution of the form
F\ _ [ Xi(F'pi+ Flqi+ F"r)
<G> B (Zg(G?Pi + Glqi + G}”n)) '
where
F = (16uu; + 12uvvy + 6u1v2 — 2u3 — 6vvz — Sv1v2) po + (16142 + 12uw?
—8us — 17vvy — 4v%)p1 — 3(4u1 + 5vv1) p2 — Bu + 5v%) p3 + ps
+ (2uvy + Su1v — v3)go + (1luv + 2% — 4v)q1 — Sv1g2 — 4vQ3
+ 2r3(—2 cos(2w)uv + cos(2w)vy — sin(Rw)u1 — 2 sin(2w)vvy)
+ 2r2(cos(2w)uy + 2 cos(2w)vvy — 2 Sin(Rw)uv + sin(Rw)vy) — 3riuz,
G = (Quv1 + Bu1v + 6vv1 — 2v3)po + (11uv + 20° — 6v2) p1 — Tv1p2 — 4vps

+ (u1 + 5vv1)g0 + (2u + 5v%)g1 — g3 — 3v1r1 + 2(— cos(2w)vy
+ sin(2w)u)rp + 2(cos(2w)u + sin(Qw)vy)rs.

In the conventional matrix operator form this solution looks as follows:
A'=L+N,

where

L L N N
L=< 11 12)7 N:( 11 12)
Ly1 L N1 Na2
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are 2x 2-matrix operators corresponding to the local and nonlocal part§ oéspectively,
and having the following entries:
L11= D2 — (8u + 5v*) D3 — 3(4u1 + Svv1) D? + (16u? + 12uv® — 8uy
—17vvp — 4v§)Dx + 16uu; + 12uvvy + 6u1v2 — 2u3 — 6vvz — Svyvy,
Lip=—4D3 — 501 D% + (11uv 4 2v® — 4vp) D, + 2uv1 + Sugv — v3,
Ly = —4vD§ — 7v1D§ + (11uv + 203 — 6v2) D, + 9uvy + 6uqv + 6v2v1 — 2v3,
Lo = —Di’ + (2u + 5v%) Dy + (u1 + Svvy),

and
Ni1=-3Y{ Dt oY{y— 4y} Dt oYy, —4vi,Dit o ¥y,
Nip=—3¥{ oD o ¥{ o — 4Y{ Dt o Y] —4Y{ Dt o ¥y,
Na1=-3Y{oDyto g —4y) Dt oYy, —4vy,D o Yy,
Npo=—3Y{oDito¥yg—4v) Dt oy, —4vy,D o ¥y,

whereas

Y yu yu
1,0 11 ¥y
Yl,0=< v )7 Yl,lz( v ), Y1’2=< v )
Yio Y14 Yy,
aresymmetries of the coupled KdV—-mKdV system (s¢&]) presented in the form
Yf,o =uq, Ylv,o = v1; Y‘f,l = — cos(2w)(%u1 + vvy) + sin(2w)(uv — %vz),
Y:Il.),l = :‘zl cos(w)vy — % sin(w)u;
Y7, = cos(2w)(uv — %vz) + sin(zw)(%ul + vv1),
Yf,z = —% cos(Cw)u — % sin(Qw)v.

Remark 14. Expressions for the entries of the operatowere obtained as it was indicated
in Remark 12

As above, simulating the techniques developed for the local theory, we have checked that

[A,A]=0 and [4’, A] =0,

i.e.,A andA’ are compatible.

Remark 15. Though systenfl9)is Hamiltonian with respect td’, there does not exist the

corresponding Hamiltonian. This can be proved using the same techniques we used in the

proof of Theorem 2Nevertheless, the following facts are valid. Recall (18) possesses a
recursion operator [5]. Denote this operator b and note that our Hamiltonian operators
are related to each other by means of this recursion operator, i.e.,

A’ =Ro A.



P. Kersten et al./ Journal of Geometry and Physics 50 (2004) 273-302 301

Moreover, in the same way one can construct a whole hierarchy of pair-wise compatible
Hamiltonian structures. On the other hamdgenerates a hierarchy of equations in which
(19) is the first term. Them’ is a Hamiltonian structure for all other equations of this
hierarchy and these equations possess Hamiltonians with respgct to

To make our exposition self-contained, we describe the recursion opdtatoithe
Appendix A
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Appendix A. Recursion operator for the coupled KdvV-mKdV system [5]

To construct the recursion operator, it needs to extend the nonlocal setting introduced
above. Namely, we add three new nonlocal variablgeswi1, andwi2 defined by

Wiy =u, W= 3u? + 3uv — uz — 3vvy; w11x = COS(2w)w1v + Sin(2w)v2,
w11, = COS(2w)(3wuv + wvd — w2 + Uvg — uqv — v2v1)
+ sin (2w) (4uv? + v* — vy — v%); w12y = cosCw)v? — sin(Qw)wv,
w12 = COS(2w) (4UU2 — vt —2vup + vf)
+ sin (2w) (—3wuv — wv® + wws — Uvg + v2v1)
(seeExample 9. ThenR is a 2x 2-matrix operator
R— (Rll R12>
R21 R22
with the entries
Rii= D2 —4u—v® = Y{ Dt oY+ Vi oD o v — 3Yi 0D,
R12=2vD% + v1 Dy — 3uv + 2v2 — Y§ 1 D oy , + Yy oDyt oyl + V5 DL,
Ror=—2v— Y} Dy oy 5+ Y] D oy — 370D,
Ryp=D%—2u—v?— ¥}, D oyl , + Y] ,D oy + Y8, DL

whereY1 g, Y1.1, Y12 are the same symmetries that enter the expression for the nonlocal
Hamiltonian structuret’, Y» 1 is another symmetry with the components

Yél,l = C0oS(2w) (—w11u1 — 2w11vv1 + 2w12Uv — wi2v2) + SIiN(2w)
X (2w11Uv — w11v2 + wiou1 + 2w12vv1) — 2Uv1 — U1V — 2v201 + v3,

Y31 =€0s(2w)(w11v1 — wigu) — SiN(2w)(w1iu + wigvy) — (41 + vv1),
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while

vl =—sinw),  ¥i;=22sinw)v— w1,
Y1, = — COS(2w), V12 = 2(2cos(2w)v + wi1).

Note thaty11 = (1/;{1, 1/;{,1) andy12 = (t/fiz, 1//{72) are the generating functions for
(nonlocal) conservation laws.
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